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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM

FLUTTER

By THIIODOEE MODORSITN

OF

SUMMARY

The aerodynamic forces on an oscillating ai~oi.1 or
airjm”lderon wmbination of three independent degree-s
of jreedom have been determined. The problem reaolvtx
itselj inio the solution oj certuin dejini.teintegma..?x,which
have been ideni!@xl u BM8eJjunctiorw oj the jirst and
second kind and oj z-cro and jirst order. The than-y,
being bawi on poteniial @w and the Kti condition,
L7jumi4zmenta.UyeqwivaLW to the conveniim.d uing-
8ecti.ontheory rehz.t?h.gto the steady ca$e.

The airjorcee being known, tlw mechunti oj aerody-
namic instability has been analyzed in detail. An &
8oluii0n, involving potenti.aljluw and the adoption oj the
I<utta condiiion, hw been an-ivedai The soltiion is of
a simplejorm and is avpressedby meuru oj an auxiliury
parameter k. 2!%smailwmdicd treai?nerlt0?+70proViO?.e4
a c.unvenientcyclic amangemeni permitting a uniform
tredmeni of a[l &ubca8eeoj two degreesof freedom. %
$hdter velocity, de@.ed as the air velocity ai which$utter
8tarts,and which is treated ax the unknown qyun.$ity,h
determind u a junction of a &ain raiio tij the jre-
guenciee in the 8eparatedegreesojjreedomjor any mugni-
tu.o?aand combinati.cmoj the airjml-aileron parameters.

For thoseinterestedsolely or parti.cu?dy in thenumeri-
cal solution-sAppendix I ?uw been prepared. The rw
tiw procedure in solving numerical ezamples ti pd
down detachedjrom -that?korei%xu?background of the
paper. Itfist is n.ecee8aryto determiw a certuinnumber
oj constantspertaining to the cme, then to pqform ajew
routine cdcuMum

.
aa indicated. The rtxwlt b readily

obtained in theform oj a plot oj $utter velociiy againd
frequencyjor any values of the other parameters chosen.
Tlu numericu-1work of cahdating the mtanis is tim-
plijid by rejen-ing to a number oj tabltx, which are in-
cludedin Appendix I. A numberoj ihatrative examples
and experimentalredt.s are given in Appendix II.

INTRODUCTION

It has been known that a wing or wing-aileron struc-
turally restrained to a certain position of equilibrium
becomes unstable under certain conditions. At least
two degrees of freedom are required to create a oon-
dition of instability, as it can be shown that vibrations

of ~ single degree of freedom would be damped out by
the air forces. The air forces, defied as the forces due
b the air pressure act~~ on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstationary potential flow. A wing-
section theory and, by analogy, a wing theory shall be
thus developed that applies to the case of osoillakn-y
motion, not only of the wing as a w-hole but also to
that of an aileron. It is of considerable importance
that large oscillations may be neglected; in fact, only
infinitely small oscillations about the position of
equilibrium need be considered. Large oscillations
are of no interest since the sole attempt i9 to specify
one or more conditions of instabili~. Indeed, no
particular type or shape of airfoil shall be of ccmcern,
the treatment being restricted to primary effects. The
differential equations for the several degrees of freedom
will be put down. Each of these equations contains a
statement regarding the equilibrium of a system of
forces. The forces are of three kinds: (1) The inertia
forces, (2) the restraining forces, and (3) the air forces.

There is presuma~ly no necessity of solving a general
caae of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applying to the
case of unstable equilibrium. Th& restriction is par-
ticularly important as the expressions for the air force
developed for oscillatory motion can thus be employed.
Imagine a case that is unstable to a very slight deggee;
the amplitudes will then increaae very slowly and the
expressions developed for the air forma will be appli-
cable. It is of interest simply to know under what
circumstance this condition may obtain and cases in
which the amplitudes are decreasing or increasing at a
finite rate need not be treated or speoiiied. Although
it is possible to treat the latter cases, they are of no
concern in the present problem. Nor is the internal
or solid friction of the atructnre of primary concern,
The fortunate situation exists that the effect of the
solid friction is javorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, a9 this c=e constitutes a sort of lower
limit, which it is not always desirable to exceed.
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Owing to the rather extensive field covered in the
pnper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These poteritials
are treated in two classes: The noncirculating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as “circulatory”
potentials. The magnitude of the circulation for an
oscillating wing-aileron is determined next. The

A%

x

FmuFu! L-Confmnd rep-Won of the wing proffle by a drde.

forces and momenti acting on the airfoil are then
obtained by i.LltSb~tiOIl. In the latter part of the
paper the diilerentisl equations of motion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The soldion
of the problem of determining the flutter speed is
finally given in the form of an equation expressing n
relationship between the various parameter The
three subcasea of two degrees of freedom are treated
irrdetail.
. The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving .mod.iiicatiousof the
primary results by secondwy effects for future investi-
gations.* Such secondary effects are: The effects of a
finite span, of section shape, of deviations tim poten-
tial flow, including also modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary cmperimental work included in
Appendis II similarly refers to welldetined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given Minite degrees of freedom
by a supporting mechanbm, with external springs
maintaining the equilibrium positions of wing or w“ng-
ailercm. The experimental work was carried on
largely to verify the general shape of and the approxi-
mate magnitudes involved in the theoretical pre-
dicted response characteristics. As the present report
is limited to the mathematical aspeets of the flutter
problem, specific recommendations in reggprdto prac-
tical applications are not giren in this paper.

1The etlert cd Internal frfotfon is fn some _ -M; tbfs snbJwt wfll ba
cantalmd in a mM8quent pawr.

VELOCITYPOTENTIALS,FORCES,AND MOMENTSOF
THE NONCIRCULATORYFLOW’

We shad proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily represent the wing by a circle (fig.
1). The potential of a source Eat the origin is given
by

$0=-&log (&+@)

For a source c at (z,, y,) on the circle

$0=;7log { (x–z,)’+ (!/-?/1)2}

Putting a double source 2Cat (.z1,v1)and a double
negative source —2Gat (xl,—y]) we obtain for the flow
around the circle

(x–z,)’+ (y–~,)z
-~; log(Z–ZJ*+ (y+?/l)z

The function P on the circle gives directly the SW:
face potential of a straight’line pq, the projection of the
circle on the horizontal diameter. (See fig. 1.) In
this case y= ~1 –~ and v is a function of x only.

We shall need the integrals:

J ‘ (z–zJ’+(Y–YJ2&1 -2(z_~) ]q337__2~ Cos-’c
~log(.–zJ’+@+YJ’

and

J
1

~om (x–z,)’+ ‘–~ (r,–c)dx, =b (x–r,)’+ (y+yf)’ -m-~
c

–cos-lc(z-!?c) Jl-&+ (z–c)~log N

where

——
~=l–cx–dl–z?~ l-?

x—c

The location of the center of gravity of the wing-
aileron z= is measured from a, the coordinate of the
axis of rotation (fig. 2); XBthe locai.ion of the center

&- .,,
c.g.of aileron .’ +/!

FIamtE 2—Pfuametem of the nlrfofl.elleron cotnblnallon.

of gravity of the aileron is measured from c, the coordi-
nate of the hinge; and r= and T6are the radii of gyration
of the wing-aileron referred to a, and of the aileron
referred to the hinge. The quantities ZP and rp are
“reduced” values, as detlned later in the paper. The
quantities a, z=, c, and ZBare positive toward the rear
(right), his the vertical coordinate of the axis of rota-
tion at a with respect to a fixed reference frame and is
positive downward. The angles a and f3 are positive
clockwise (right-hand turn). The wind velocity uis to
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the right and horizontal. The angle (of attack) a
refers to the direction of o, the aileron angle p refers to
the unreflected position and not to the wind direction.
The quantities r. and 7P always occur as squares.
Observe that the leadin edge is located at – 1, the
trailing edge at +1. & e quantities a, c, xa, ~, r=,
and r~, which are repeatedly used in the following
treatment, are all dimensionless with the half chord b
as reference unit.

The effect of a flap bent down at an angle/3 (see fig.
2) is seen ta give rise to a function p obtained by sub-
stituting —o~b for G;hence

PO=“#[dG?cos-’c– (z– c) logN’j

To obtain the effect of the flap going down at an
angular velocity ~, we put f = —(zl—c)BF aud get

pJ“~g[4HJF&+ Cos-’c(z– 2c)~

– ($–c)’ log Aq

To obtain the effect of an angle a of the entire air-
foil, we put c- – 1 in the expression for q~,hence

$0== vab~n

To depict the airfoil in downward motion with a veloc-
h

ity ~ (+ down), we need only introduce ~ instead of a.

Thus
ff~= &l=-

I?inally, to describe a rotation around point a at an
angular velocity &, we notice that this motion may be
taken to consist of a rotation around the leading edge
c = – 1 at an angular velocity &plus a vertical motion
with a velocity – &(l + a)b. Then

P&-~~(z+~)-—~(l +a)~’-

()
=&b’ ~x–a ~=

The following tables give in succession the velocity
potentials and a set of integrals z with associated con-
stants, which we will need in the calculation of the air
forces and moments.

VRLOCITY POTENTIAM

pa ‘llab~m

$oi=ib~
Q

w=.b2(~.-a)-

% -:q?b[~= COS-;C–(Z–C) log ~

@-& flb’[dm~-+ (X– ZC)~= COS-’C

– (x–c)’ log ~

where ~= 1–CC– Jm~–2
x—c

$SOrneof the more dlUJmdt hU.wmdeVdM1Om are given in Ap~ndIs 111.

INTEGRALS

CONSTANTS

T,= –;~&(z+&) +C COS-lc

T2= c(1 – &) – ~i(l +&) COS-lC+C(COS-1C)2

( .)
T,= – ;+; (cos-’c)’+~c FF COS-’C(7+ 2?)

–;(l–&) (5&+4)

T,= – COS-lC+ C~=
T6= – (1 – d) – (COS-1C)2+2C~ COS-lC
T,= T,

()
T,= – ;+& Cos-’c + ; c ~&(7 + 209

T8= –; JFP (2&+ l)+ccos-lc

‘9-+[:(J-Y+aT41-~(-~+”T4)
‘herep”-w%
T,o= ~& + COS-l C

Tll=cos-’ c(l–2c)+41–&(2–c)

T.= -d (~+ C) – COS-l C (2c+ 1)

TU=~[– T,–(c–a)T,]

TL4-&+:ac
FORCE9 AND MOMRNTS

The velocity potentials being known, we are able to
calculate local pressures and by integration to obtain
the forces and moments acting on the airfoil and
aileron.
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Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure is, ~cept for a constant

pb=-’(~+a
where w is the local velocity and p the velocity poten-

tial at the point. Substituting w= U+~ we obtain

ultimately for the pressure difference between the
upper and lower surface at z

P=-’’(v%+%)
where o is the constant velocity of the fluid relative to
the airfoil at in6nity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap

/-h.*,
—=3-”

–Ar

Fmum 3.-Gmf0rmd rqmserhtbnof the wingpidfe WMIreferencetothe
Chwlntca-y flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

JP= –’pb :@x

s
+1

– ‘Pbz @(c–a)dx
–1

Or, on introducing the individual velocity potentials
from page 5,

P = –Pbs [vir&+ rh– bn-aii-vT@– bTfi] a)

MB= – ‘b’
[

—cT@- Tlh+2Tlabti 1—:vT& – : Tzbj3

+ Pvbz
[

–vT4a– T4h+ 2Tgbti– ~vT# – ~ Tzb~1
[

= – pb2 T4tia– (2T9+ TJ /w&+ 2Tl~b2&+ $ T6@B

‘(+T’-:Tw-:b2TJ+T4v’-b’l’l‘)
‘i.=-’b’[-da+(:+a2)b”z+’-T+’T’TT’T’

– (c–a)T4}b/b+{– T,– (C–u) “7,}b2~

VELOCITYPOTENTIALS,FORCES,AND MOMENTS
OF THE CIRCULATORYFLOW

In the following we shall dekrmine the velocity
potentials and associated forces and momenta due to a
surface of discontinuity of strength U extending along
the positive x axis from the wing to infinity, The
velocity potential of the flow around the circle (fig. 3)
resulting from the vortex element —AI’ at (Z, O) is

AI’ t,m-l (-i+xo)y
‘z

‘-(XO++)X+P”
where (X, Y) are the coordinates of the variable
and XOis the coordinate of —AI’ on the x axis.

Introducing %+~”%

orz=%+~~onthezati

and X=x and Y=~= on the circle

the equation becomes

This expression gives the clockwise circulation
around the airfoil due to the element —AI’ at TO.

‘ehave:p=-2’(%+v9
But, since the element – Ar will now be regarded as
moving to the right relative to the airfoil with n
velocity v

ap av
Tt”s t

Hence, p= – 2pv
(%’*)

0

and
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To obtain the force on the aileron, we need the
integral

Thus, for the force on the aileron

Integrated, with AI’ = Udx,

for c= – 1 we obtain the expremion for P, the force
on the whale airfoil

m

Since U is considered stationmy with respect to the
fluid elements

U= f(ut-z,)

where t is the time since the b* of the motion.
U is thus n function of the distance born the location
of the jirstvortex element or, refereed to a system
moving with the fluid, U is ddionury in value.

Similarly we obtain for the moment on the aileron

-;OS-lC(C+;)]+;JZZJ(WS-lC-CR) ]

?utting AI’= Udzo and integrating

J4E--q[{J=++;)

-cOs-lc(c+Nr&iub’
+(Cos-’c-clm-) ;f’&gu~o] (w

?m~er,for the moment on the entire airfoil around a

;—z@

md ALL= – pvb’AI’
m

lh%grated, this becomes

f

=1
~—zfl

We= – pvb’
● 1 -Uho

THE MAGNITUDEOF THE CIRCULATION

The magnitude of the circulation is determined by
the Kutta condition, which requires that no iniinite
velocities exist at the trailing edge,
or, at z=l

~(Pr+@.+9i+P&+p~+p#)=tih

Introducing the values of pa, etc. from page 5 and

ap
Wrborn ~z page 6 gives the important relation:

This relation must be satishd to comply with the
Kutta condition, which states that the flow shall leave
the airfoil at the trailing edge.

It is observed that the ralation reduces to that of the
Kutta condition for stationary flow on putting a= ~,

●
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and in subsequence omitting the variable parameters
& f), and 1.

L-etus %rite

Introduced in (IV)

from (V)
r

M,=-2,ub21(e(l+;)-ws-c(c+;))x

J“*iuhO {

Jd
. )]+2 COS-’C-CJ=77 Q

- mb’

Lw

2’
.80

.60

.40

.20

-G

o
m

Introducing

S
. z’— Udz,2

““iF. Z’+1
1 z=iud”

we obtain finally
P= – 2PoM7Q m)

Mb= – 2@b’
[(@’+9 -ms-1c(c+9)c

1+;(COS-l C–C~&) Q= – ~b’(T,,C– T4)~ @)

3’.=2’@f(”+wlQ m

where Q is given above and 0= C(k) will be treated in
the following section.

VALUE OF TRE FUNCTION C (k)

Put u= Uoei’(b)+’]
where 8 = ut (8+ @), the distance from the jT8t vortex
element to the airfoil, and k a positive censtrmt deter-
mining the wave length,
then

J
ma—e-’%kca

C(k) =
1 JZO*—1

Jmzo+le_* ‘od~
1-

These integrals are known, see next
~)-~) and we obtain a

(XI)

part, formulas

Tl:v
O(k) =

L-L —dll-tl]

–;Jr;YO+i;Yri;Jo ‘(JI+
YJ+i (Y, –JfJ

-(–J, +W,)[-(J, +Yo)-W,-Jo)l
(J,+ Ye)’+ (Y, –Jo)2

-J,(J,+ Yo) + Y,(Y, –Jo)
(J, + Yo)2+ (Y, – Jo)’

.Y, (J,+ Y’) –J1(Y, –JO)-F+iC
‘z (J, + Y’)’+ (Y, –~o)’

where
~=J, (J, + Yo) + Y, (Y, – Jo)

(J, + Ye)’+ (Y, –Jo)2
(XII)

Y, Y. + J,JO
‘= – (J, + Yo)2+ (Y, – Jo)’

(XIII)

These functions, which are of fundamental importa-
nce” in the theory of t~e oscillating airfoil are given

graphically against the argument ~ in figure 4.

SOLUTION OF THE DEFINITEm~NT&G:~3 IN C BY MEANS OF BESSEL

We have

where

and

but

K. (z)= fe-’”o’h’ cosh nt dt

(Formula (34), p. 51—Gray, Mathmvs
& MacRobert: Treatise on Bcasel
Functions. London, 1922)

K. (t)= e% (?. (it)

@q. (28), sec. 3, p. 23, same reference)

[

.

PC?=(z)=-z(x)+ log2– -y+; .(z)

(where Ym(z) is from N. Nielsen:
Handbuch der Theorie der Cylindcr-
funktione.n. Leipzig, 1!304).



GENERAL THEORY OF AERODYNAMIC INSTARIUFY AND TRJ?JMECHANISM OF FLU’FJ.’ER 419

Thus,

(7, (z) = –;[Y. (z)–iJJ2j]
We have

or

Thus,

m)

(xv)

Further,

J J
.eiz%&

K, (–ik) = me- ‘“m’ coshtclt = —
o 1-

WI (k)= –{; Y, (k)--; c7,(k)

Thus,

m)J“z Cos kxdx
-–; J,(k)

,Ji7=i.

J“Xsinh%dz-–; Y,(k), .@=q . m)

TOTAL AERODYNAMIC FORCES AND MO~NTS

TOTAL FORCE

~rom equations (I) and (VIII) we obtain

-2”pdcloa+~+b(:-a)’+:Tl@’
m)

TOTAL MOMENTS

From equations (II) and (IX) we obtain similarly

~ Mp=–pb
{[ ( )1

–2T3– Tl+T4 a–~ oba + 2Z’]3b%

-T’b’l-@b’T4va+’+b(i-a)’
+;T,ov13+ b&T,,6

1
m)

From equations (III) ~d (X)

‘a=-pbi”(i-a)”b’+ ”b’(i+a’)’
+ (T4+ T,o)ti/3

,.
( )

+ T1– T8–(c–a)T, +~T,l ob~

- ‘7+@-a4v’-a’4(
‘2@’b’”(a+3c{va+’+b(i-a
+:TIOV19 + b;mTl,j

I
Gm

DIFFERENTIAL EQUATIONS OF MOTION

Expressing the equilibrhim of the moments about a
of the entire airfoil, of the moments on the aileron
about c, and of the vertical forces, ‘we obtain, respec-
tively, the following three equations:
a: –I@-I@B-b(c-a)SBB-Sa~-a Ca+M==O

P: –l~~–Ip&–b(c–a) W~–Wp–~C~+Mp=O

h: –iM-ii&-@fi-hQ, +P=O
Rearranged:

a: iiIa+B(I~+ b(c-a)Sp)+RS=+ aC=-M==O

B: &(Ib+b(c —a)SP)+#IP+ hSF+~c6— MP=0
h: &a+ flSb+iM+hQ,-P=O

The constants are defied as follows:

P) mass of air per unit.of volume.
b, half chord of wing.
M, maw of wing per unit of length.

Sa,sfl. static moments of wing (in slugs-feet) per
unit length of wing-aileron and aileron,
respectively. The former is referred to
the axis a; the latter, to the hinge c.

1~,18, , momenti of inertia per unit length of
wing-aileron and aileron about a and c,
respectively.

c=, torsional stiflmss of wing around a, cor-
responding to unit length.

Cfl, torsional stiflness of aileron around c, cor-
responding to unit length.

Ch, stiflncas of wipg in deflection, correspond-
ing to unit length.

DEFINITION OF PARAMETERS USEU IN EQUATIONS

“’%?’
the r’atio of the maas of a cylinder of air of

a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span.
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f
r== ~,,

x== A,
Mb

r
c=U== Z’

r
Ifl

‘p= lEZF

—
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~p= ~,
the radius of gyration divided by b. Mb

d~the center of gravity distance of the wing Ufl= ~
from a, divided by b. 6

the frequency of torsional vibration
~h=

around a. r $

FOR AlilRONAUTICS

r8du#d center of gravi~ distance from c,

frequency of torsional vibration of aileron

around C.

frequency of wing in deflection.

redd radius of gyration of aileron I FINALEQUATIONS IN NONDIMENSIONAL FORM

divided by b, that is, the radius at On introducing the quantities LL, lfp, and P,
which the entire mass of the airfoil replacing Z’e and TISfrom page 6, and reducing to
would have to be concentrated to give nondimensional form, we obtain the following system
the moment of inertia of the aileron lP. of equations:

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable

equations, we shall divide t~ough by ~&~K.

equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once ss sine functions of the distance 8 or, in complex

fomtiti; as ~ auxiliary parameter, giving the I
ratio of the wave length to 27rtimes the half chord b: I

rmd h-~f (k%%) I
where s is the distance horn the airfoil to the@

vortex element, $ = o, and PI and pa are phase angles

of p and h tith respect to a.

We observe that the velocity u is thin ~ontained in
only one term of each equation. We shall consider
this tarn contain@ o as the unlmown parameter ilX.
To distinguish tams containing X we shall employ a
bar; terms without bara do not contain X.

We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let tho
letter A refer to the coefficients in the fimt equation
not containing C(k) or X, B to similar coefficients
of the second equation, and c to those in the third
equation. Let the first subscript a refer to tho tit
variable a, the subscript @ to the second, and h to the
third. Let the second subscripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
ment of each variable, respectively. Al thus refers
to the coefficient in the first equation associated with
the second derivative of a and not containing U(k) or
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~ (?Mto the constant in the third equation attached to
h, etc. The9e coefficient 4are as follows:

(-A,,)

(=B,,)

4(rho f8tir #or+,b not Im3h&f h th13wWmt8nt& See the expressions for

m m end ra on Ilort P9m

The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanis~~ of a third-order detertiant of com-
plex numbers representing the coefficients. The solu-
tion of particular subcases of two degrees of freedom
is given by the minors invol~ the particular cc-
e5cieniw. We shall denote the case iortiileron
(a, P) as ease 3, ai?.erodqledion (/?,h) as ease 2, and
_n-torti (h, a) ss case 1. The determinant
form of the solution is given in the major case and in
the three possible subcases, r~pectively, by:

l?.#Ia., R@-h&I, R~-F&

D= R,a~iIh, &+&p, R,,-EiIb, =0
R,a-+i.laa, R@-W.p, &~~Ich

IMAGINARY EQUATIONS

&%I ~ raaI~

= 0 rb=IM R&
=0 Case3

=0 Case2

=0 Ca9el

Nom.-TenrM with tars cmntafn Z tarma wfthont bars do not contain X.

The 9 quantities R==, R.p, eto., refer to the real parts
and the 9 quantitiw I==, Id, etc., to the imaginary
parts of the coefficients of the 3 variables a, & and h
in the 3 equations A, B, Con page 10. Denoting the
coefhcients of a, a, and a in the iirst equation by p,
g, and r,

which, separated in real ,and imaginary parts, gives
the quantities R.= and I... Similarly, the remaining
quantities R and I are obtained. Th6y are ~ func-
tions -of k or C(k). The terms tith bars R==, i?@j
and R* are seen to be the only ones containing the
unknown X. The quantities $2and X will be deiined
shortly. The quantities R and I are given in the
following list:
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-1R ( WWF] ‘1’.=E–&+Q=X+~2~+a
( )[ 1&B=–&+&&i+&a+$T1lQ–2~TI@CO

(3)

(4)

(6)

IBA +3,+2,X+ (9)

“a.=-i[2(a++)l(+-aP++G}-~1’11)

I
‘~’=-+[:(a+:)k”F+2iTlo~)-*1’12)
Iti

()
=–~2 a+; F (13)

‘1.a-+[2[(+-a)F+#al+c~l

I

(17)

[( )1LB=;: W+2;TloQ + C&z (18)

IC,-~2F (19)

The solution ai ~ven by the three-row determinant
shall be written explicitly in X. We are immediately
,able to put down for the general case a cubic equation
in X with complex coeilicients aindcan easily segregate
the three subcases. The quantity D is as before the
value of the determimmtj but with the term containing
x missing.The quantitiw M.=, Mb5, and Mm are
the minors of the elements in the diagonal squarca

aa,- @, and ch, respectively. They are expressed ex-
plicitly in ternMof R and I under the subcascs treated
in the following paragraphs.

Aa.+fLX Ad .Ati

E= Abe Ab~~~& Am =0
A= Ad A&-FQhX

where AU=Raa-FiJ.. etc.

Case 3, (a, p):

Q=Q&P+($2mAti+QflA==)X+M&=0

Case 2, (/3,h):

QfiQ~~(Q~A&~Q~Abfl)X~M.a=O

Case 1, (h, a):

QbQJ?~ (f2hAm+fLA&)X+M@=0

(X=O

(XXIII)

m)

(–)x-~ b-,(+ a
K tic

We are at liberty to introduce the reference param-
eters u~ and r,, and the convention adopted is: U7is
the last u in cyclic order in each of the subcases 3, 2,
and 1.

‘en’”(*)’ and fl.+l=l, thus for

()
Case 3, %= $ ‘and fl~=l

()
Cme 2, flfl= ~ ‘and $2,=1

(J

J
Ca8e 1, %= ~- and $2.=1

To txeat the general case of three degrees of freedom
(equation @)), it is observed that the real part
of the equation is of third degree while the imagimrry
part furnishes an equation of second degree. The
problem is to find vrdues of X satisfying both equn-
tions. We shall adopt the following procedure: Plot

~aphic~y X against ~ for both equations. The points

of intemection are the solutions. We are only con-
.

cerned with positive values of ~ and positive values of

X. Observe that we do not have to solve for k, but
may reverse the process by choosing a number of
values of k and solve for X. The plotting of X

against ~ for the second-degree equation is eimplo

enough, where= the task of course is somewhat more
laborious for the third-degree equation. However,
the general case is of 10s.9practical im~ortance than
are the three subcases. The equation simplifies con-
siderably, becomirqgof second degree in X.
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case (a, B). The complex
quadratic equations (XXII) -- all rmolve
themselves into two independent statements, which
we shall for convenience denote “ Iinagimwy equa-
tion” and “Real equation”, the former being of tirst
rmd the latter of second degree in X. All constanta
are to be resolved into their real and imaginary parts,
denoted by an upper index R or 1, respectively.

Let iMa.e.lbR=.+iLPa. and let similar e~~r~sio~
denote ikfb~and Md
Case 3, (a,p). Separating equation (2CKII) we obtain.
(1) Imaginmy equation:

(i2aIW+QP10.)X+.Wch =0

x– M.
‘—%185+~~tta

(2)Real equation:

fl=qqxq- (flJ2bp+q9Ra=)x+iw*=o
Eliminating X we get

By the convention adopted we have in this case:

wr=qg, “.=(%X3‘“d”=’

But we have

Ilnnlly, the equdion for Case 3 (a, ~) becomas:

where

~ The remnining cssea may be obtsined by cyclic
rearrangement:

Equations @IV), m), and @WII) thus
give the solutions of the csses: tortiomdmn, aii270n-

dej?eciim, and dg?ectim-torsi.on, respectively. The
quantity Q may immediately be plotted against

~ for any value of the independent parameters.

The coefficients in the equations are all given in terms
of R and I, which quantities have been defined above.
Routine calculations and graphs giving Q against

~ are contained in Appendix I and Appendix II.

Knowing related values of !2and ~, X is immediately

expressed m a function of Q by means of the fmat-
degree equation. The deiin.ition of X and Q for each
subcsse is given above. The cyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subossea.

It shall finally be repeated that the above solutions
represent the Zwrder cam of unstable equilibrium.
The plot of Xagainst $2gives a boundmy curve between
the stable and the unstable regions in the X~ plane.

It is preferable, however, to plot the quantity ~ ~ -

instead of X, since this quantity is proportional to the
square of the flutter speed.. The stable area can easily
be identified by inspection ss it will contain the axis

~ ~0, if the combination is stable for zero velooity.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMImEIO FOE hEONAU~CS,

LANGLEY hLD, VA.,May 2?,1934.

Gol-3&28



APPENDIX I

PROCEDURE IN SOLVING NUMERICAL EXAMPLES

(1) Determine the R’s and I’s, nine of each for a
major case of three degrees of freedom, or those per-
taining I%a particular subcase, 4 R’8 and 4 I’s. Refer
to the fo~owing for the R’8 and .f”8 involved in each
case:

The numerde 1 to 9 and 11 to 19 are used for con-
venience.

Y
ajor case) Three

egreea of tieedom

1

2

3

4

5

6

7

8

9

1

2

4

5

5

6

8

9 R* I@ 19

(Case 1) l)efleotion-
torsion (h, a)

7 Rca Ica 17

9 Rd Ia 19

1 B.. I.. 11

3 Rah Id 13

It has been found convenient to split the R’s ti hvo
parts R=R’ +R”, the former being independent of

the argument;. The quantities I and R“ are funG-

424

lions of the two independent parameter a and c only.*

(1)

(2)

(3)

(4)

(6)

(6)

(7)

(8)

(9)

(11)

(12)

(13)

(14)

(16)

(16)

(17)

(18)

(19)

s me qmntftlm I givenh theapwnti emd uwl fn the followlng wdoufatfone

~mtodifr~fromtir$@mh the~yofti~wtitietitir~” It

mey h netfed that W faotor drew out fn the tit-dogma eqoatfw.
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Choosing certain values of a and c and employing
the values of the T’s given by the formulas of the report
(p. 5) or in table I and rdsousing the values of 1’ and
d (formulas (XII) and (XIII)) or bble II, we evaluate

.
the quantities I and R“ for a certain number of ~

vcduea. The rew.dts of this evaluation are given in
tables III and IV, which have been worked out for
a= 0,—0.2, and—O.4, and for c=O.5 and c=O. The

range of ~ is from Oto 40. These tables save the work

of calculating the I’s and R“’8 for ahnost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities R’ to

be determined. These, being independent of ~, are as

a result emy to obtain. Their values, using the same
system of numbers for identification, and referring to
the definition of the original independent variables on
pages 9 and 10, are given as follows:

R1m=sme M R’d

R’@=ssme as R’~~

R’&=–; –l

Because of the symmetrical

(3)

(4)

(5)

(6)

(7)

(8)

(9)

arrangement in the
detemnirmntj the 9 quantities are seen to reduce to
0 qurmtitics to be calculated. It is very fortunate,
indeed, that all the remaining variables segregate them-

selves in the 6 values of R’ which are independent of ~,

while the more complicated 1 and R“ are functions
solely of c and a. In order to solve any problem it is
therefore only necessary to refer to tables Ill and IV
rmd then to calculati the 6 values of R’.

The quantities (1) to (9) and (11) to (19) thus

having been determined, the plot of Qagainst ~~which

constitutca our method of solution, is obtained by
solving the equation af12+ZL?+c=0. The c.mstants
a, b, and c are obtained rmtomaticdly by computation
nccording to the following scheme:

Case 3

Find products 1.5 2.4 11.15 12.14

~en~’~=1.5-2.4-+ (11.15-12.14)

I?ind products 1.15 2.14 11.5 12.4
Then .il@aE1.15-2.14 +11.5-12.4

and a=ilf5a(16)z-il@~ (5.15)
. b=–~@(2.14-l-12 .4)+~@(ll.15)

c=il’@*(ll)~-J@* (l.11) I?ind Q=

Solution: *= -*

similarly
Case 2

5.9 6.8 16.19 16.18

~aa=5.9–6.8–#15 .19-16.18)

5.19 6.18 15.9 16.8
il@aa=5.19-6.18 +15.9-16.8

a=il&a=(19)2-.B@a= (9.19)
b=–il@a.(6.18-16 .8)-@=. (15.19)
c=wa=(15)*—i147a=(5.15) l?ind Qfl

1 Qp(19)+15
.x - M.=

and
Case 1

9.1 7.3 19.11

itz%p=9.1-7.3 –;(19.11–17.13)

9.11 7.13 19.1
i1’@,/?=9.11-7.13 +19.l-17.3

a=~~~(ll)z—~~fl(l.ll)

17.13

17.3

6=–~,~(7.13+17.3) +~,~(19.11)
f?=~@(19)s—~@.19) Find n,

1 $2,(11)+19—.x ~bfl

1

()flais deiined as ‘~ for cme 3;

()

a
Qflis deii.nedas ‘$ for case 2; and

.

quanti@, which is propotiond to the square of the
flutter speed, repreisentathe solution.

We shall sometimes use the square root of the above

i .@, and will denote thisquantity, viz, ;
d x bwr,
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quantity by ~, which we shall term the “flutter factor”
The flutter velocity is consequently obtained as

.=F!!y
K

Since F is nondimensional, the

obviously be a velocity. It is useful to establish the
signihmm of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

that .=% and that the stitbas in case 1 is given by

d
‘“ this reference velocity maybe written:w== —

il!ff%a’

irmEzbf= C.

The velocity o. is thus the velocity at which the total

force on the airfoil rPOE22fIattacking with an mm ~

equals the torsional stMnesa C. of the wing. This
statement means, in case 1, that the reference veloci~
used is equal to the “divergence” veloci@ obtained
with the tcrsional wds in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

1
vD’vE~

ij+a

where a ranges from O to-~. ‘il’e may thus expr=q

the flutter velocity as
VP=VRF

In case 3 the reference velocity has a similar signi6-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a leverage ~ b equals numeri-

cally the torsional stiffness U@of the aileron or movable
tail surface.

In case 2. no suitable or useful significance of the
referenee ve~ocity is available. -

TABLE I.—VALUES OF T

0
0
0
0
0
0
0
0
0
0
0 J

-0. 1!254
-a 21CQ
–. M31a
-.6142
–. me

-0.2103
.0122

i Pa
L2XMI

. 070c5

c-—pi c--1
.—

TABLE IL—TABLE OF THE BESSEL FUNCTIONS Jo,Ji
Y,,Y, AND THE FUNCTIONS F AND G

F(t) -
J,(J,+Y~+ Y,(YI-Jo)

(J1+YW+(Y1–JW

– G(k) -
Y, (J1+YO) -J1(Y1-JO}

(J,+ YO)+(YI-J@

t

.
10
:
2
1
.8
.6
.6
.4
.3
.2
.1
.06
.I%26

o
T

o . . . . . . . .
$40 -a 24.!4

i

. 1W3
–. S972

# jj

# %&

xl .–!?!
40 . .. -----

- l--------

J,

.. -- . . .
CL(M24

–. 2767
-. CeKl

. 6i67

.4401

.26SS

.2%.57

.2423

.1036

. 14s3

.Cc3J.5

. 64GW
. . . . . . .
--------
. . . . . . .

‘“IY:IFI-G
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TABLE HI.—VALUE9 OF R

40

.Lm.xul
–917. 3A2m
–m 92Kl

–74L mm
–24L MM

269. W8

–Ma 7220
10L 6340
47k 2SS2

–a ma
–2 Ioxl
–. EnM

2m. 712ZU
X&swl
!aEWm

34,W.SO
3L4m7
34.409

W3.2340
m. 318s

. 4u8

.mlo

3@5L4cDm
3@37.84Jm
3, W.29W

yd-&Lo

7. m

.

I I “i .-

IV*A (lj (q .W
1 I I I I 1 I I I

1Im@mdent Of c. * Independent of a.

TABLE IV.—VALUES OF I

o

a
HO H )4 254 3)4 5 10 Lm 40

c

-H-
WQa& :fi O.mms

.81014 . 81CG7 :%

.17874 . liws .18219

.39212 .39278 .39418

.00546 .euw . bth314 -1+
:%5 ~787# l. OiE!&

.s70s9 .Wu30 . W7m

. Mm .67EXI .S2Cm

.Ss3m .nml

.WmS :%% .72377

0
-. 2
-. 4

~
-.
-. 4

O.!wm
. 4WXI
.81CWI

. 17%06
39170

. E0s31 ---t-

a2724& 0.W5U
.mlw

.81145 .W3QJ

.19433 . 237&3

.40147 .42748

.12w7 .61724 -l-t-
~Z W& a6mYl

.027w
.8293s .2476 . 86M9

.23848 .32132 .30W

.44474 .47761 . &M?J

.62zfra .6339.5 .043m 3+
L7W20 2. W&l LO17Q
L3X140 ~, ~4W&
L073W

L arm 21047B 2W
LOi?31S L64ii’3 2WW!J
. &m3 .9WJ L141@3

IP4
—

I.P

(q

—

o

+-

0 .13262
—. 2 . 2P2Q7
-. 4 .25342

0 -. HXm

2: :% -t+

.13317 I :~~ .13W3

.21335 . 21E30

.2EQM .2!J376 .W419

-..WEO –.&nEzl –.m
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. 22N1 .24472

.Zw40 .X!4@3
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. ma14 . X811 . 2a514
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. 3W1 . S1818 . 32JW4

–. 65410 –. 57EM -. Omm
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.Waul

H--
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l.= p&& 2.!2mE
L 47037
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0.5

—
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—

Ike

—

Ibp

—

Ibh

021 Xm’z&
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APPENDIX n “

NUMERICAL CALCULATIONS

A number of routine examples have been worked out
to illustz-atetypical results. A “standsrd” case hss
been chosen, represented by the following constants:

Kd).1, Cd).52 (Z—-().4, X.=().2,

1 1“r.z=0.251 z~=—J r~~-—80 160

u=,w~,~k mmiable.

We will show the results of a num~cal computation
. of the three possible subcases in succession.

160

120

J1.

80

40

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

FIGURE 5.-CW93, Tordonderon (% B): ~ - showing & add+

Cnse 3, Torsion-aileron (a,13): Figure 5 shows the %

against ~ relation and @e 6 the final cum-e

()
1

F=K ~
a~bb “@=tQ==(%Y=40(%)’

20

J6

12

F

8

4

0 20 40 60 80 100 ?20 140 160 180
l-h

Ram &-Caw & Tmfon-afleron (u, B): Standard mm. Slmwfw flat- fm~
Fagainstih.

Csse 2, Aileron-flesure (p, h): Figure 7 shows the

()
2

$2Psgainet ~ relation’ and figure 8 the iimd CUrVOK -&

e It Is rdhd that cmddemble care must be exemised to get these cnrvsmamn-
bly amnmta.

4!2s

The heavy line shows the standard case, while the
remaining curves show the effect of n change in the

Case 1, Flexure-torsion (h, a): Figure 9 shows a@n

.012 I

.008

r

.004

\

‘,
-.004 ‘..,,

‘.

‘.
‘..

-.0080
I 3 4

l~k

FIaUKE7.—CW z Aderondeflwtion (8, b): (8) Standnrdrosa. (b), (o), (d) Mknto

de~dency onrp. Cam (d), XS--O.W reduem to a POhIL

.
the ~b against ~ relation and figure 10 the iintd result

– ~fistQ’-(%Y”4(3()v’cWJ
Case 1, which is of importance in the propeller theory,
bss been treated in more detail. The quantity Fshown

Figure 11 shows the dependency on~-~;

Egure 12 shows the dependency on the location of the
axis a; figure 13 shows the dependency on the radius of
gyration r==r; and figure 14 shows the dependency
on the location of the center of gravity z, for three
Werent combinations of constants.

EXPERIMENTAL RESULTS

Detailed discussion of the experimental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in tbc following am
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restricted to wings of nlarge sapect ratio, arranged with
two or three degrew of freedom in accordance with the

1.4

/.2

,1.0

.8

F’

.6

.4

.2

0 .Lz12 .Ock? .006 .008 .0[0 .or2 .014
Jla

FIOPIKE8,—CM z Alloron4eSe&lon (A9,h): Fhd mm giving flatk fmtor F
agalmt rfpmnwrondhg to _ shown in Sgnm 7.

theoretical oases. The wing is free to move pdel to
itself in a vertical direction (h); is equipped with an

120 1

100

80

60

ah

40

20

t

o
\ .

— = ~

/-

-20 I
1

0 2 4 6 a 10
I/k

FIOUBE 9,–CM 1, Flomretomlon (b, u): Standnrd caw Showing Qhagdnst~.

axis in roller bearings ‘at (a) (fig. 2) for torsion, snd
with an aileron hinged at (c). Variable or exchang~

~ble springs restrain the wing to its equilibrium
position.

1.2 \

1.0“ \

.8 I

F

.6 \

\
.4

\

.2
\ /

/ ‘

\
~ <

0 4 8 12 16 20
fih

FIOUBE1O.—C8S31, F1omretodon (& u): Standard as. Showing flntk fmtor
F against%.

We shall prwent results obtained on two wings, both
of syrmnedcal cross section 12 percent thick, and with
chord 2b=12.7 cm, tested at OO.

MO

\

Loo

F

.50

0 %%%2k~6f

The

W@ A, aluminum, tith the follo~ co~t~~:

K=&? a= —O.4,z== O.31,0.173, and 0.038, ‘

rmpectively;
T.2=0.33 ~d Wg=7~2~ ,..
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Wq B, wood, with flap, and the constants:

1
‘-m’ c-0”5’ a-–O.4, xa=O.192, ra2=0.178,

q=o.o19, @=o.0079, and a. kept constant
=17.6X2zr

The results for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, req.@ively. The abscissas are the fre-
quency ratios and the ordinates are the velocities in
cm/sec. Compared with the theoretical results calcu-
lated for the three tOstcase9, tlmre is an ahnost perfect

.3.00?

2.50-

/

DI
2.00 I

/

~
(.50 / -

/
F

/

/ ‘

Loo ~

.50 -’

(J -.2 -.4 -.6
a

Flom IfL-Case 1. Flemretcden (h, a): showing de@dOnoy ofF onlmation

● ofarfs ofmtatiena. Akfoffw’ithr-+:z-o$E~; ~.~:@veriebl&
46n6

agreement in case 1 (fig. 15). Not only is the minimum
velccity found near the same fkequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the faot that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a smalI value of the velocity to a definite upper
limit. It was very gratifying to observe that the upper
branch of the curve not only existed but that it was
remarkably definite. A small increase in speed near
this upper limit would su.fiiceto change the condition
from violent flutter to oomplet8 rmt, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (@s. 16 and117).

CO~ ~OR AE!RONAWJXCS

The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-
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peat themselves satisfaotmily. Nd, that the influ-
ence of the internal friction’ obviously is quite appreci-

7l%!amtt.erb the~Jeotof a peper:now in ~tion.



GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FL~E 431

able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the aileron are very low, and no steps were taken to
elimimte the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject

o .2 .4 .6 .8 1.0 I-.2 1.4
@#/wd

FIaurm 15.—fJw L ~M A. TJmxe~aJ ~d tiati ~ dv@ fl~~
velmlty v agdnstfroqmncg ratio ~~ DWOIFtmdOJI-

to timporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiment me seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all csaeaiweue
the speed at which flutter starts.
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APPENDIX

EVALUATION OF (OP

l–cx+~i=2Ji=2
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—2= Cos-lc-’z log (c—z)
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